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Abstract

The Matsuoka oscillator has been used to control various robots that

perform rhythmic movements. The oscillator-driven control system usu-

ally takes a feedback structure. While the oscillator actuates some part

of a controlled object, some state variable of the object is fed back to the

oscillator. An important property of this control scheme is that the oscil-

lator comes to drive the object at its natural frequency, not at the inherent

frequency of the oscillator. Although there are some works that intend to

elucidate the mechanism of this resonance tuning, they are mostly based

on simulations or graphical analyses. It seems therefore di�cult to draw

a clear, general conclusion from those results. This article expresses the

input-output relation of the oscillator in a form of describing function.

Based on the function, the unique characteristics of the Matsuoka oscilla-

tor and the mechanism of resonance tuning are explained clearly.

central pattern generator, the Matsuoka oscillator, describing function, reso-
nance tuning, entrainment

1 Introduction

The model of central pattern generators proposed by the author [1, 2] has been
applied to various robots that perform rhythmic movements, particularly to
locomotive robots. The model is composed of two identical, spontaneously �ring
neurons that are coupled in a symmetric way; one neuron's �ring suppresses the
other neuron's activity. This reciprocal inhibition between the neurons produces
a sustained oscillation.

The oscillator-driven control system usually takes a feedback structure. While
the oscillator actuates some part of a controlled object or robot, some state vari-
able of the object is fed back to the oscillator as input. Namely, the oscillator
is not used just as a driver, but as an input-output element or controller. The
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most important property of this control scheme is that the oscillator adapts to
the object dynamics and drives the object at the object's natural frequency, not
at the oscillator's inherent frequency.

Although there are some works that intend to clarify the mechanism of the
resonance tuning, they are mostly based on simulations or graphical analyses
such as the Bode and Nyquist plots [3, 4, 5]. In those works the results are given
only to some particular sets of parameter values. It is therefore di�cult to draw
a general conclusion from the results. In particular, it seems to be impossible
to quantitatively state how the emergence of resonance tuning depends on the
values of the model parameters. That implies that it is di�cult to obtain a
design guideline for determining the model parameters when given a controlled
object.

In this article the input-output relation of the oscillator will be given in a
form of describing function, which is a frequency transfer function depending on
the input amplitude. All unique properties of the Matsuoka oscillator as a con-
troller will be explained based on the function. The results can be summarized
as:

1. Properties of the oscillator as an input-output system

(a) When the amplitude A of the sinusoidal input is relatively small, the
output of the oscillator becomes a mixture of an oscillator-originated
oscillation and an input-originated one. As the input amplitude in-
creases and exceeds a critical value A0(ω), where ω is the input fre-
quency, the so-called entrainment occurs; namely, the inherent os-
cillation originated from the oscillator completely disappears in the
output.

(b) As the the input amplitude increases further, the output amplitude
decreases; this is a peculiar characteristic of the Matsuoka oscillator
used as a controller.

(c) When the input amplitude reaches a value A1(ω), the output totally
vanishes.

2. Explicit expressions of the describing function N(ω,A) in two particular
cases

(a) When the amplitude of the input is close to A0(ω) or A1(ω), the
describing function can be given in explicit forms.

(b) In respect of the phase characteristic, the oscillator works as a kind
of �rst-order linear system for a large input amplitude, but the gain
characteristic is completely di�erent.

3. Properties of an oscillator-driven feedback system

(a) When the oscillator is coupled with a mass-spring-damper system
with a high feedback gain, the oscillation generated is completely dif-
ferent from the inherent oscillation generated by the oscillator alone.
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(b) Resonance tuning to the natural frequency ωp of the controlled object
occurs when ωp is larger than a value ω1, which is a function of a
time constant of the oscillator.

It should be stressed that all these results are given by mathematically explicit
expressions; N(ω,A), A0(ω), A1(ω) and others will all be given as speci�c func-
tions of the model parameters.

The approach addressed in this article has some merits. First, it can explain
the mechanism of resonance tuning more clearly than simulations or graphi-
cal methods. Second, it will give a speci�c guideline to determine the model
parameters in the design of the oscillator-driven control system.

2 The Neural Oscillator

In this section we shall give a brief sketch about the Matsuoka oscillator. An
important point is that the frequency and amplitude of the oscillation generated
by the oscillator alone can be predicted with explicit functions of the model
parameters. The theoretically predicted frequency ωn and amplitude An will
also appear in the following sections.

2.1 The model

The oscillator model proposed by the author [1, 2] is composed of two identical
neurons. The dynamics of each neuron is given by the following second-order
system of di�erential equations, so that the whole system is of fourth order:

τ
d

dt
xi (t) + xi (t) = c− ayj (t)− bvi (t) (i, j = 1, 2; i 6= j), (1)

T
d

dt
vi (t) + vi (t) = yi (t) , (2)

yi (t) = g (xi (t)) . (3)

Variables xi (t) and yi (t) represent the membrane potential and the �ring rate of
neuron i, respectively. Neuron i receives a tonic input c (> 0) and an inhibitory
input −ayj (t) from the other neuron j (6= i). Variable vi (t) represents an adap-
tation property ubiquitously seen in real neurons, and works as a self-inhibitory
input. Note that the model describes a relatively long time-scale behavior of
the neurons; variable yi (t) does not represent the behavior of individual spikes
produced by the neuron, but the spike frequency.

Function g is de�ned as g (x)
4
= max {0, x}; it embodies a threshold char-

acteristic of the neuron's �ring. Although g is nonlinear, it has a linearity in
a limited sense: g (αx) = αg (x) (α ≥ 0). This scaling linearity enables the
relatively easy treatment of the present model.
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2.2 Condition for stable oscillation

The reciprocal inhibition between the neurons and the adaptation (self inhibi-
tion) both play essential roles for rhythm generation. Without either of them
the neural circuit cannot produce a stable oscillation. The condition for the
stable limit cycle is given by [1] as

1 +
τ

T
< a < 1 + b. (4)

Parameters a (> 0) and b (> 0) represent the strength of reciprocal and self
inhibitions; τ (> 0) and T (> 0) are the time constants that determine the
reaction times of variables xi (t) and vi (t), respectively.

The �rst inequality in (4) demands that the reciprocal inhibition be strong
enough to prevent simultaneous �ring of the two neurons. The second inequal-
ity requires the adaptation to be su�ciently strong so as to prevent unilateral
excitation of either neuron. Throughout this article the model parameters are
assumed to satisfy (4).

2.3 Frequency and amplitude of the oscillation

In [1] the author showed the condition for the stable oscillation, but gave no
description about how the frequency and amplitude of the oscillation depend
on the model parameters. In the literature, a lot of mathematical analyses for
various neural oscillators or CPG models can be seen. Some of the mathematical
techniques used in them are: the singular perturbation theory [6], a method
for piecewise linear systems [7], a method of averaging [8], harmonic balance
[9], the phase plane analysis [10]. However, few reports give mathematically
explicit relations between the frequency/amplitude of the oscillation and the
model parameters. Recently the author obtained explicit expressions for that
by means of the describing function analysis (DFA) [11].

According to the analytical result, the (angular) frequency of the oscillation
is around

ωn ,
1

T

√
(τ + T ) b

τa
− 1. (5)

This result suggests an interesting parameter setting. If parameters a and b are
set equal, then ωn takes a remarkably simple form as ωn = 1√

τT
.

The amplitude of the fundamental harmonic component in xi (t) proves to
be around

An ,
c

K−1 (Kn) + (a+ b)L (K−1 (Kn))
, (6)

where Kn is de�ned by

Kn ,
τ + T

Ta
=
τTω2

n − 1

b− a
. (7)
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Because of the �rst inequality in (4), Kn takes a value between 0 and 1. The
de�nition of functions K and L will be given in the next section. They are very
complicated functions, but (6) can well be approximated by a much simpler
expression:

An ≈
c

2Kn − 1 + 2
π (a+ b) sin−1 (Kn)

. (8)

Indices ωn, An, and Kn will appear as important parameters also in the
following sections. The reader might have a question of how the above result
can be derived, but there is no need to read the article [11]. A quite simple
proof will be given based on the result obtained in subsection 4.1.

3 Describing Function of the Oscillator

The objective of this section is to derive the describing function of the oscillator
as an input-output system.

3.1 The oscillator as an input-output system

When the oscillator is used to drive an actuator such as an electric motor
mounted on a robot, the di�erence y (t) of outputs y1 (t) and y2 (t) is usually
used:

y (t) = y2(t)− y1 (t) . (9)

The most important feature of the oscillator-driven control system is that
the oscillator does not only drive a controlled object or a plant in terminology of
control theory, but also receives some state variable u(t) from the plant as input.
This feedback structure enables the oscillator to adapt to the plant dynamics
and perform an energy-e�cient driving. Although several input methods are
conceivable, most researchers have adopted the following method [3]:

τ
d

dt
xi (t) + xi (t) = c− ayj (t)− bvi (t)− g (±u (t)) . (10)

Namely, each neuron receives −g (±u (t)) as input. Symbol ± takes + or − for
i = 1 or i = 2, respectively; when u (t) takes a positive / negative value, it gives
an inhibitory input to neuron 1 / 2 and zero input to neuron 2 / 1.

An interesting feature of this input method is that, since yj (t), vi (t), and
g (±u (t)) are all non-negative, the right-hand side of (10) never exceeds positive
constant c, implying that xi (t) is bounded to the upper by c. This leads to
0 ≤ yi (t) ≤ c and hence −c ≤ y (t) ≤ c. Therefore, if the plant is a bounded-
input bounded-output stable system, its output does not diverge unstably even
if the feedback gain in the system is set arbitrarily large.

For a summary we here write the whole set of equations of the oscillator as
an input-output system:
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τ
d

dt
xi (t) + xi (t) = c− ayj (t)− bvi (t)− g (±u (t)) , (11)

T
d

dt
vi (t) + vi (t) = yi (t) = g (xi (t)) , (12)

y (t) = y2(t)− y1 (t) . (13)

3.2 DFA of nonlinear element g

The oscillator includes four nonlinear elements, but they are all the same: g(u) =
max {0, u}. Before calculating the describing function of the whole system, we
apply DFA to this (memoriless) nonlinear element.

Let u (t) be an input to g and assume that it is a purely sinusoidal wave with
frequency ω, amplitude A, and bias d:

u (t) = A cos (ωt) + d = A (cos (ωt) + r) (A ≥ 0), (14)

where r is the ratio of the bias to the amplitude, r = d
A . Parameter r may take

any positive or negative value. Then, the output of g can be written as

g (u (t)) = g (A (cos (ωt) + r)) = Ag (cos (ωt) + r)

= A (K (r) cos (ωt) + L (r))

+ higher-order harmonics of ω. (15)

Note that the scaling linearity of g is essential and that K(r) and L(r) are
functions only of r. Function K(r) represents the amplitude ratio between the
fundamental harmonic components of the output and the input. Function L (r)
is the ratio of the output bias to the input amplitude. Henceforth we neglect
higher-order harmonic terms in this kind of equations; eqn (15) is written simply
as g (u (t)) = A (K (r) cos (ωt) + L (r)). It can also be written as

g (u (t)) = K (r) ũ (t) +AL (r) . (16)

Variable ũ (t) denotes the fundamental harmonic component in u (t): ũ (t) =
A cos (ωt) in this case.

Eqn (16) is a linearized equation that represents the input-output relation
of g, but actually it is not linear because coe�cients K(r) and AL (r) depend
on the amplitude and bias of the input. Symbol˜will also be used for other
variables in the same meaning, i.e., fundamental harmonic components in xi (t),
yi (t) and vi (t) are denoted as x̃i (t), ỹi (t) and ṽi (t), respectively.

Functions K(r) and L(r) are given by

K (r) =


0 (r < −1)

1
π

(√
1− r2r − cos−1 (r)

)
+ 1 (−1 ≤ r ≤ 1)

1 (r > 1),
(17)
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L (r) =


0 (r < −1)

1
π

(√
1− r2 − r cos−1 (r)

)
+ r (−1 ≤ r ≤ 1)

r (r > 1),
(18)

where cos−1 (r) is de�ned such that 0 ≤ cos−1 (r) ≤ π. The derivation is given
in Appendix A. The graphs of the functions for −1 ≤ r ≤ 1 are shown in Fig.1
(left and middle).

Functions K(r) and L(r) are monotonically increasing functions, and their
ranges are 0 ≤ K (r) ≤ 1 and 0 ≤ L (r) < ∞. In the DFA the input to
g is assumed to be a sinusoidal wave with a bias. Obviously, when K(r) is
small, g (u (t)) deviates from a pure sinusoid due to the distortion induced by
g. For r ≤ −1 or K (r) = 0 or L (r) = 0, the output vanishes: g (u (t)) ≡ 0.
Conversely, when K(r) is large, the distortion is small and hence the accuracy
of the obtained result will be high. For r ≥ 1 or K (r) = 1 or L (r) ≥ 1, no
distortion is induced by g: g (u (t)) ≡ u (t). Thus, K(r) can be used as an index
for evaluating the accuracy or validity of the above analysis. It is easy to �nd
that K (0) = 1

2 and L(0) = 1
π .

A rough approximation of K (r) is

K (r) ≈ r + 1

2
(−1 ≤ r ≤ 1), (19)

and function L (r) can be approximated as a function of K (r) as

L (r) ≈ 2

π
sin−1 (K (r)) (−1 ≤ r ≤ 1), (20)

where sin−1 (K) (0 ≤ K ≤ 1) is de�ned such that 0 ≤ sin−1 (K) ≤ π
2 . Actually,

the form r ≈ 2K(r)− 1 will be used rather than (19). The validity of (20) can
be seen in Fig.1 (right), which is a K versus L graph. The thin curve in the
�gure is a parametric representation of (K (r) , L (r)) (−1 ≤ r ≤ 1) where K (r)
and L (r) are given by (17) and (18), and the thick curve represents function
L = 2

π sin−1 (K). It can be seen that the two curves remarkably coincide. The
derivation of (8) from (6) was made by using these approximations.

When r is close to ±1, neither (19) nor (20) however gives good approxi-
mations. In section 5 the describing function with r ≈ −1 will be investigated.
More accurate approximations of K (r) and L (r) are required in the case and
they are given in Appendix B.

In this subsection, variable u (t) has been assumed to be an input to any of
the four nonlinear elements. Henceforth, symbol u (t) will be used solely for the
input to the whole oscillator, i.e., the input to g in (11), not in (12). We only
consider the case that u(t) has no bias: u (t) = ũ (t) = A cos (ωt). Then we �nd
that

g (±u (t)) = A (±K (0) cos (ωt) + L (0)) = ±1

2
u (t) +

1

π
A. (21)

Note that g (xi (t)) cannot be expressed in such a simple form as above because
xi (t) has a nontrivial bias.
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Figure 1: Functions K(r) (left), L(r) (middle), and L(K) (right). In the right
�gure, the thin curve represents the exact relation between K(r) and L(r) and
the thick curve is its approximation given by eqn (20). L(r) of the latter curve
takes a slightly larger / smaller value than that of the former curve for a range
of small / large K.

3.3 The describing function of the oscillator

In this subsection we assume that the amplitude of the oscillator's input is
su�ciently large and the output therefore becomes a purely periodic wave of the
input's frequency. Namely, we consider the situation that a perfect entrainment
to the input occurs. Let xi (t) (i = 1, 2) be

xi (t) = Ax (cos (ωt+ ϕi) + rx) = x̃i (t) +Axrx (Ax ≥ 0), (22)

in which higher-order harmonics are neglected. Parameter rx is the ratio of the
bias to the amplitude of xi (t). We assume that x1 (t) and x2 (t) behave in a
symmetrical manner, i.e., both are expressed by (22) but with ϕ1 = ϕ2 + π.
Then we have x̃2 (t) = −x̃1 (t).

Utilizing (16), we can express variable yi (t) = g (xi (t)) as

yi (t) = K (rx) x̃i (t) +AxL (rx) . (23)

Variable vi (t) can be expressed as

vi (t) = ṽi (t) +AxL (rx) , (24)

because, according to eqn (12), the bias component of vi (t) is equal to that of
yi (t). Substituting (21), (22), (23) and (24) into (11) and (12) leads to

τ
d

dt
x̃i(t) + x̃i(t) +Axrx = c− a (K (rx) x̃j (t) +AxL (rx))

−b (ṽi (t) +AxL (rx))

−
(
±1

2
u (t) +

1

π
A

)
, (25)

T
d

dt
ṽi (t) + ṽi (t) = K (rx) x̃i (t) . (26)
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Further de�ning x (t)
4
= x̃2 (t)− x̃1 (t) and v (t)

4
= ṽ2 (t)− ṽ1 (t), we have

τ
d

dt
x (t) + (1− aK (rx))x (t) = −bv (t) + u (t) , (27)

T
d

dt
v (t) + v (t) = K (rx)x (t) , (28)

y (t) = K (rx)x (t) . (29)

We have now obtained a set of linearized equations that relates input u (t) and
output y (t), but note that K (rx) depends on the frequency ω and amplitude A
of u (t). A trivial but important conclusion is that the vanishment of the output
occurs if K (rx) = 0.

Applying the Laplace transform to (27) and (28), we obtain the transfer
function or describing function from u (t) to x (t):

G (s,A) =
1

τs+ 1−K (rx)
(
a− b

Ts+1

) (30)

=
Ts+ 1

τTs2 + (τ + T − TaK (rx)) s+ 1 + (b− a)K (rx)

=
Ts+ 1

τTs2 + (Kn −K (rx))Tas+ 1 + (τTω2
n − 1) K(rx)

Kn

. (31)

The third equality comes from (7). The constant term in the denominator,

1 +
(
τTω2

n − 1
) K(rx)

Kn
(= 1 + (b− a)K (rx)), is always positive because of the

second inequality in (4) and 0 ≤ K (rx) ≤ 1. On the other hand, the coe�cient
of the s term, (Kn −K (rx))Ta (= τ + T − TaK (rx)), can take a positive as
well as negative value. However, it should be noted that the above function has
been derived on the assumption that Kn −K (rx) > 0, because otherwise the
system becomes unstable.

Precisely speaking, the describing function should be written in a form of
frequency transfer function as

G (ω,A) =
1

jτω + 1−K (rx)
(
a− b

jTω+1

) (32)

=
jTω + 1

1 + (τTω2
n − 1) K(rx)

Kn
− τTω2 + j (Kn −K (rx))Taω

. (33)

but expressions like (31) will also be used for its clarity. The describing function
from u (t) to y (t) is

N (ω,A) = K (rx)G(ω,A). (34)
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Two forms are given to G (ω,A) because two particular cases are investigated
later: K (rx) = 0 and K (rx) = Kn. In the former case, (32) directly leads to
G (ω,A) = 1

jτω+1 ; in the latter case, (33) directly leads to G (ω,A) = jTω+1
τT (ω2

n−ω2) .

Because the gain from u(t) to x(t) is |G (ω,A) |, the amplitude of x(t) is given
by |G (ω,A) |A. Since x(t) = x̃2(t) − x̃1(t) = −2x̃1(t) = 2x̃2(t), the amplitude
Ax of xi(t) is half that of x(t). Thus we have

Ax =
1

2
|G(ω,A)|A. (35)

3.4 Calculation of rx

Describing function G(ω,A) is a very complicated function because rx is a
complicated function with respect of ω and A. rx = rx(ω,A) can be deter-
mined in the following way. Extracting the bias components from (25), we have
Axrx = c− aAxL (rx)− bAxL(rx)− 1

πA or

Ax{rx + (a+ b)L(rx)} = c− 1

π
A. (36)

Combining (35) and (36), we obtain

{rx + (a+ b)L(rx)} |G(ω,A)| = 2

(
c

A
− 1

π

)
, (37)

i.e.,

rx + (a+ b)L(rx)

|jτω + 1−K (rx(ω,A))
(
a− b

jTω+1

)
|
= 2

(
c

A
− 1

π

)
(38)

or

{rx + (a+ b)L(rx)} |jTω + 1|
|1 + (τTω2

n − 1) K(rx)
Kn

− τTω2 + j (Kn −K (rx))Taω|
= 2

(
c

A
− 1

π

)
. (39)

This equation de�nes function rx = rx(ω,A), but implicitly. We assume that
K(rx) < Kn; only this case is signi�cant as described in the last subsection. On
this matter a more detailed discussion will be made in subsection 4.1.

Henceforth we assume that the model parameters are set such that rx(ω,A)
is uniquely determined and it is a decreasing function with respect to A. A
typical choice of the model parameters for that is a = b and hence ωn = 1√

τT
,

which was referred to in subsection 2.3. Then, eqn (39) reduces to

(rx + 2aL(rx)) |1 + jTω|

|1−
(
ω
ωn

)2
+ j (Kn −K(rx))Taω|

= 2

(
c

A
− 1

π

)
. (40)

Then, the left-hand side of (40) proves to a strictly increasing function with
respect to rx, while the right-hand side is a strictly decreasing function with
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respect to A. Thus, rx must be uniquely determined for given A, and it must
be a decreasing function of A. Since K(rx) is an increasing function of rx, it
is also a decreasing function of A. In the case of a 6= b, however, we have no
general theory about the the shape of rx(ω,A) at present.

Now we have obtained the complete set of equations that speci�es the de-
scribing function. Here we write them for a summary:

G (ω,A) =
jTω + 1

1 + (τTω2
n − 1) K(rx)

Kn
− τTω2 + j (Kn −K (rx))Taω

, (41)

N (ω,A) = K (rx)G (ω,A) , (42)

where rx is given (implicitly) by

{rx + (a+ b)L(rx)} |G (ω,A) | = 2

(
c

A
− 1

π

)
. (43)

4 Two Critical Amplitudes of the Input

If the amplitude of the sinusoidal input is small, the output will be a mixture
of an oscillator-originated wave and an input-originated one. As the amplitude
increases and exceeds a critical value, the so-called entrainment occurs; the
inherent oscillation originated from the oscillator completely disappears. As the
input amplitude increases further and reaches another critical value, the output
totally vanishes. In this section we shall �nd these critical amplitudes. In the
analyses, there is no need to solve (43) with respect to rx. The value of K(rx)
(and hence rx and L(rx)) is �rst determined from some consideration without
(43), and then the critical amplitude is found by solving (43) with respect to A.

4.1 Minimum amplitude for entrainment to the input

Describing function G (s,A) was derived based on the assumption that the os-
cillator entrains to the sinusoidal input. However, when the input amplitude
is too small and hence K (rx) is large, G (s,A) enters an unstable region. The
critical amplitude below which the system becomes unstable can be considered
the lower bound of the entrainment.

From (31), the stable-unstable transition is found to occur when

K (rx) = Kn

(
=
τ + T

Ta

)
. (44)

In this situation, eqn (39) becomes

N(s,A) =
Kn (Ts+ 1)

τT (s2 + ω2
n)
. (45)
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Figure 2: The minimum amplitude A0(ω) for entrainment (dashed curve) and
the minimum amplitude A1(ω) for a vanishing output (solid curve). The dotted
line is an experimental result corresponding to A0(ω), which is a rough copy
from [3]. The vertical line indicates the critical frequency ω1 = 12.1. A0(ω) and
A1(ω) both converge to πc = 3.14 for ω →∞.

The linear system theory tell us that, without input, this system generates
a periodic oscillation of frequency ωn, which is the inherent frequency of the
oscillator. Thus, it can be predicted that the complete entrainment occurs
when K(rx) < Kn.

Substituting K (rx) = Kn into (39) and solving it with respect to A, we �nd
the minimum amplitude of the input for entrainment. We denote it by A0(ω):

A0(ω) =
c

1
2

√
T 2ω2+1

τT |ω2−ω2
n|

c
An

+ 1
π

. (46)

Although An is a complicated function of Kn, it can well be approximately by
(8). It is easy to �nd that A0(ωn) = 0.

In Fig.2 the graph of A0(ω) is illustrated by a dashed line. The model
parameters are set as τ = 0.1, T = 0.2, a = b = 2.5, c = 1.0. In this parameter
setting, ωn is 7.1; ωn is the bottom frequency of the curve. The thin dotted
line in the �gure shows the corresponding result obtained by a simulation [3].
A remarkable correspondence can be seen between the two curves.

Incidentally, in section 2 the reader might have had a question of how the
frequency and amplitude produced by the oscillator without input prove to be
ωn and An. Now that we have obtained the above result, the proof is quite
simple. The fact that A0(ωn) = 0 implies that an oscillation of frequency ωn
emerges without input. Substituting A = 0 and rx = K−1(Kn) into (36) leads
to Ax = c

K−1(Kn)+(a+b)L(K−1(Kn))
= An.
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4.2 Minimum amplitude of the vanishment of the output

As described in subsection 3.4, the output amplitude of the oscillator decreases
with the increase of the input amplitude. When the input amplitude becomes
su�ciently large, the output may totally vanish. We can prove that the mini-
mum amplitude for that is

A1(ω) =
c

1
π −

1
2

1√
τ2ω2+1

(ω > ω1), (47)

where

ω1 =

√
π2

4 − 1

τ
. (48)

This proposition can be proved as follows. When the output is zero, relation
K(rx) = 0 holds. That implies rx ≤ −1 and hence L(rx) = 0. In this state, eqn
(38) reduces to

1

2

rx
|jτω + 1|

=
c

A
− 1

π
. (49)

From this and rx ≤ −1, we �nd that, if

A ≥ c
1
π −

1
2

1
|jτω+1|

= A1(ω), (50)

then the output vanishes. This result is however valid only in the case of 1
π −

1
2

1
|jτω+1| > 0 or ω > ω1. The graph of A1(ω) (ω > ω1) is shown in Fig.1 (solid

curve). The vertical line indicates ω1.
In the case of ω < ω1, the situation becomes completely di�erent. When

A→∞, eqn (43) reads

{rx + (a+ b)L(rx)} |G (ω,A) | = − 2

π
(51)

This equation proves to hold for a value of rx larger than −1, as follows. For
rx = −1 the left-hand side of the above equation takes − 1√

τ2ω2+1
, which is

smaller than the right-hand side, − 2
π , in the case of ω < ω1. Since the left-hand

side is an increasing function of rx, the above equation must hold for a value of
rx larger than -1. We thus �nd that K(rx) takes a positive (nonzero) value and
hence the output never vanishes even if the input amplitude is arbitrarily large,
including the limit case of A→∞.

The fact that the output amplitude of the oscillator decreases with the in-
crease of the input amplitude (and moreover for a high-frequency range the
output �nally vanishes) reveals a strange characteristic of the Matsuoka oscil-
lator. The peculiarity will be realized if comparing it with the characteristic
of a simple saturator: y(t) = u(t) for |u(t)| < u0 and = u0 otherwise. In this
case, the output amplitude monotonically increases with the input amplitude
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and �nally becomes constant. That implies that the gain of the saturator is
proportional to 1

A for large A. The result obtained in this subsection implies
that the gain of the Matsuoka oscillator decreases more sharply than 1

A . This
peculiar characteristic is due to the fact that input u(t) is applied to the neurons
in an inhibitory way.

4.3 A0(ω) versus A1(ω)

We have thus found that the describing function obtained is characterized by
two functions: A0(ω) and A1(ω). Function A0(ω) characterizes the property
of G(ω,A) for a small amplitude input, while A1(ω) characterize that for a
large amplitude input. Relation A0(ω) < A1(ω) holds, and A0(ω) and A1(ω)
both converge to πc in the limit of ω → ∞. Functions A0(ω) and A1(ω) are
characterized by critical frequencies ωn and ω1, respectively.

An interesting �nding is that A1(ω) does not depends on a, b, or T , but only
on τ and c. That contrasts A0(ω), which depends on all the model parameters.

When the oscillator is used as a controller, the amplitude A of the input
should be between A0(ω) and A1(ω). In the oscillator-driven control system,
frequency ω1 is more important than ωn because the feedback gain is usually
set to be high and hence the amplitude of the oscillator's input is large.

4.4 Examples

Here we show two simulations. In both, the parameters of the oscillator are set
as a = 2.5, b = 2.5, c = 1.0, τ = 0.1, T = 0.2. The inherent frequency ωn
calculated by (5) is 7.1; the critical frequency ω1 calculated by (48) is 12.1.

In the �rst simulation the frequency of the input is �xed at ω = 50, which is
larger than ω1. Fig.3 shows the output of the oscillator for several amplitudes
of the input. It can be seen that entrainment occurs at amplitudes larger than
around 1.6; the theoretically estimated amplitude for that is A0(50) = 1.82.
As the amplitude increases further and reaches around A = 4.6, the output
vanishes completely; the theoretical prediction is A1(50) = 4.54.

In the second simulation, the input frequency is set at ω = 4, which is
smaller than ω1. It can be seen that entrainment occurs around A = 0.3; the
corresponding theoretical prediction is A0(4) = 0.41. The output vanishes at a
very large value of A, around 8000. The theoretical analysis however predicts
that the output never vanishes at ω < ω1. This discrepancy is due to inaccuracy
of the DFA for low-frequency input; this matter will be discussed in the next
subsection. In spite of such a discrepancy, the argument in subsection 4.2 well
explains why the frequency response of the oscillator for large input di�ers
radically between the low and high frequency ranges.

4.5 On accuracy of DFA

It should be noted that the DFA, in which all higher-order harmonic components
are neglected, is a rough approximation method. Here we give some comments
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Figure 3: The output of the oscillator with variable amplitude A and �xed
frequency ω = 50 of the input.
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Figure 4: The output of the oscillator with variable amplitude A and �xed
frequency ω = 4 of the input.
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on inaccuracy associated with the method. The inaccuracy becomes serious
particularly in two cases.

One is the case that the frequency of the input to the oscillator is very low.
The DFA assumes that higher order harmonics rapidly decay through some low-
pass �ltering elements in the system. Therefore, if the method is applied to a
low-frequency range (more speci�cally, if ω � 1

τ ,
1
T ), it does not give a good

approximation. For example, let us consider an extreme parameter setting:
a = b = c = 0. In this case, for a very low frequency range, eqn (11) reduces to a
static equation xi(t) = −g(±u(t)) ≤ 0 and hence y(t) = g(x2(t))−g(x1(t)) = 0;
i.e., the output vanishes. The DFA however yields a di�erent result. From eqn
(21), we have

xi(t) = −g(±A cos(ωt)) =
A

2

(
∓ cos(ωt)− 2

π

)
(52)

and hence

yi(t) = g(xi(t)) =
A

2

(
∓K

(
− 2

π

)
cos(ωt) + L

(
− 2

π

))
(53)

and

y(t) = y2(t)− y1(t)

= AK

(
− 2

π

)
cos(ωt) = K

(
− 2

π

)
u(t) ≈ 0.12u(t). (54)

Thus the oscillator appears to produce a nonzero output, but that is not the
reality. The DFA does not give a good approximation for a low frequency range.

Another problematic case occurs when the amplitude of the input to the
oscillator is close to A1(ω). As the amplitude A increases, rx decreases and hence
K(rx) becomes small. The smallness of K(rx) implies that distortion induced
by the nonlinear operation g(xi(t)) is large, which will lower the accuracy of the
DFA.

In spite of these problems, the DFA provides considerably accurate predic-
tions for the quantitative characteristics of the oscillator, as has been seen in
this section and as will be seen in section 6.

5 Describing Function in Two Particular Cases

In section 3 we derived the describing function of the oscillator, but K(rx) in it
was not expressed as an explicit function of ω and A. In this section we consider
the case that A is close to A0(ω) or A1(ω) (but satis�es A0(ω) < A < A1(ω)).
In these cases the describing function can be given in explicit forms.
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5.1 The case of A ≈ A1(ω) (ω > ω1)

In this case, K(rx) becomes very small, and hence the transfer function reduces
to

N(s,A) ≈ K(rx)

τs+ 1
. (55)

In order to express K(rx) in an explicit form, it will be required to express rx
and L(rx) as functions of K(rx). In subsection 3.2 an idea for approximation
was shown ((19) and (20)), but they are not su�ciently accurate for rx ≈ −1.
More accurate approximations in the case are given in Appendix B. They are

rx ≈
1

2

(
3π

2

) 2
3

K(rx)
2
3 − 1, (56)

L(rx) ≈
1

2
K(rx). (57)

Eqn (38) can thus be approximated as

1
2

(
3π
2

) 2
3 K(rx)

2
3 − 1 + 1

2 (a+ b)K(rx)

|jτω + 1−K(rx)
(
a− b

jTω+1

)
|
≈ 2

(
c

A
− 1

π

)
. (58)

For K(rx)� 1, relation K(rx)
2
3 � K(rx) holds, leading to

1
2

(
3π
2

) 2
3 K(rx)

2
3 − 1

√
τ2ω2 + 1

≈ 2

(
c

A
− 1

π

)
(59)

and hence

K(rx) ≈
4
√
2

3π

{
1− 2

(
1

π
− c

A

)√
τ2ω2 + 1

} 3
2

. (60)

Thus, we obtain the describing function in an explicit form:

N (ω,A) ≈ 4
√
2

3π

{
1− 2

(
1
π −

c
A

)√
τ2ω2 + 1

} 3
2

jτω + 1
. (61)

As ω increases with �xed A (> πc), the gain |N (ω,A) | decreases mono-

tonically, and when ω reaches A−11 (A) =

√
1

4( 1
π

− c
A )

2−1

τ , the value of |N (ω,A) |
becomes zero. With respect to the phase characteristic, the oscillator behaves
as a �rst-order linear system const.

jτω+1 , but its gain characteristic is completely
di�erent. The gain of the oscillator decreases much more sharply than that of
the linear system.
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5.2 The case of A ≈ A0(ω)

In this case, we have K(rx) ≈ Kn (K(rx) < Kn) and hence

N (s,A) ≈ Kn (Ts+ 1)

τT {s2 + (Kn −K(rx))Tas+ ω2
n}
. (62)

Obviously this is very di�erent from (55). The phase drastically change around
ω = ωn. For ω < ωn, ∠N (ω,A) ≈ tan−1(Tω), while for ω > ωn, ∠N (ω,A) ≈
tan−1(Tω) − π. The gain |N (ω,A) | has a sharp peak at around ωn; that
contrasts the gain characteristic of (61), the gain of which is a monotonically
decreasing function of ω.

6 Feedback System with a Neural Oscillator

This section considers a feedback system; the output of the oscillator is used to
drive a linear system with a high feedback gain, while the output of the plant
is fed back to the oscillator as input. The result in the last section suggests
that the oscillator should not be used with a low feedback gain. In this case the
input amplitude becomes small and hence the oscillator works as (62). Then, the
characteristic of the overall system will be strongly a�ected by ωn and resonance
tuning to the natural frequency of the plant will become di�cult.

6.1 Feedback system

Let the transfer function of the plant be P (s). Then, the system equations are

Y (s) = N(s,A)U(s), (63)

U(s) = −P (s)HY (s), (64)

where U(s) and Y (s) are the Laplace transforms of u(t) and y(t), respectively.
We investigate the oscillation emerging from the coupled system.

For the plant we consider a second-order linear oscillatory system (a mass-
spring-damper system):

P (s) =
ω2
p

s2 + 2ζωps+ ω2
p

, (65)

where parameters ωp and ζ represent the natural frequency and the damping
ratio of the system, respectively.

6.2 Harmonic balance condition

Here we consider the case that the feedback gain H is su�ciently high. In this
case the input to the oscillator becomes large and hence K(rx) becomes very
small. Then, the describing function (34) of the oscillator can be approximated
by (55).
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When a periodic oscillation is sustained, the so-called harmonic balance con-
dition must be satis�ed. The condition is P (jω)HN(ω,A) = −1 or

ω2
pHK(rx)

(ω2
p − ω2 + 2jζωpω)(jτω + 1)

= −1. (66)

Evidently, the denominator of the left-hand side must be a real number. This
gives the frequency ωr of the limit cycle generated by the feedback system:

ωr = ωp

√
1 +

2ζ

τωp
. (67)

We refer to this as resonance frequency. If time constant τ is set to be much
larger than 2ζ

ωp
, then the resonance frequency will be close to the natural fre-

quency ωp of the plant.

Substituting ω = ωp

√
1 + 2ζ

τωp
into (66), we obtain

K(rx) =
2ζ

H

(
τωp +

1

τωp
+ 2

)
. (68)

Using (59), we obtain the amplitude of the input to the oscillator in this situa-
tion. Let it be Ar:

Ar =
c

1
π +

1
2 (

3π
2 )

2
3K(rx)

2
3−1

2
√
τ2ω2

r+1

=
c

1
π +

1
2

{
3π ζ

H

(
τωp+

1
τωp

+2
)} 2

3−1

2
√
τ2ω2

p+2ζτωp+1

. (69)

An even rougher approximation can be obtained by considering H →∞:

Ar ≈
c

1
π −

1

2
√
τ2ω2

p+2ζτωp+1

. (70)

Since the amplitude must be positive, the denominator must be positive. This

leads to ωp >

√
π2

4 −1+ζ−ζ
τ , but it is automatically satis�ed when ωp > ω1.

The key point of the above discussion is that, if feedback gain H and time
constant τ are su�ciently large (i.e., ω1 is su�ciently small compared to ωp),
then the oscillator works as a �rst-order time lag element and hence produces
a phase lag of around π

2 . Therefore, if a mass-spring-damper system, which
provides a phase lag of π2 at the natural frequency, is coupled with the oscillator,
resonance tuning occurs. There is an argument in which the resonance tuning
is explained in connection with ωn [3], but the author's opinion is di�erent.

The fact is that the tuning occurs when ωp > ω1; ω1 =

√
π2

4 −1
τ is unrelated to

ωn = 1
T

√
(τ+T )b
τa − 1 = 1√

τT
(when a = b).

Eqn (70) (as well as (67)) does not include the feedback gain H, suggesting
that the amplitude of the plant output (or equivalently the oscillator input)
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Figure 5: Input u(t) and output y(t) of the oscillator in the feedback system.
The natural frequency ωp of the plant is 15.

is not so sensitive to H if H is large. It is known that the feedback system
incorporating the Matsuoka oscillator is very robust. Ferris et al. [12] compared
a single pendulum driven by the Matsuoka oscillator and by the van der Pol
oscillator, and found that the Matsuoka oscillator entrained the pendulum over
a much greater range of feedback gains than the van der Pol oscillator. This
robustness is probably related to the fact that the amplitude of the plant output
is not so sensitive to the magnitude of H.

6.3 An example

Here we show two examples. The parameters of the oscillator are all the same
as those in subsection 4.4. The damping ratio of the plant is set as ζ = 0.1; the
feedback gain is H = 15; eqn (48) gives ω1 = 12.1.

In the �rst example, the natural frequency ωp of the plant is 15.0, which is
larger than ω1. The simulation result (Fig.5) shows that the frequency of the
oscillation generated by the feedback systems is around 15.1, being very close
to ωp. The amplitude is 9.2; the theoretical amplitude Ar calculated by (69)
is 9.3. In subsection 3.8, it is pointed out that the DFA becomes inaccurate
when the input is large. In spite of that, the theoretically obtained amplitude
predicts the actual amplitude with a remarkable accuracy.

Next we look at the case of ωp = 5.0, which is smaller than ω1 (Fig.6).
The frequency of u(t) is around 5.8. Compared to the case of ωp = 15.0, its
adaptability to the natural frequency of the plant looks low. The theoretical
result in the last subsection was derived only for the case of ωp > ω1; for the
case of ωp < ω1, we have no theory at present.
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Figure 6: Input u(t) and output y(t) of the oscillator in the feedback system.
The natural frequency ωp of the plant is 5.

7 Concluding Remarks

In this article we have investigated the characteristics of the Matsuoka oscillator
as a control element.

First we derived the describing function of the oscillator. Based on it, we
derived the lowest amplitude for input entrainment, A0(ω), and the lowest am-
plitude for a vanishing output, A1(ω). We also found an important frequency
ω1 that characterizes a peculiar property of the oscillator; it is di�erent from
the inherent frequency ωn of the oscillator. Frequency ωn determines a critical
point in A0(ω) while ω1 gives a critical point in A1(ω). Next, we derived ex-
plicit expressions of the describing function for two particular cases. Finally we
discussed the behavior of a feedback system in which the oscillator is coupled
with a mechanical system with a high feedback gain. We analytically derived
the resonance frequency ωr and amplitude Ar.

It should be stressed that, considering that the DFA is a very rough approx-
imation method, the theoretical predictions coincide with the simulation results
with remarkable accuracy. The mathematically explicit expressions presented
in this article will be helpful in designing oscillator-controlled robots.
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Appendices

Appendix A: Calculation of K(r) and L(r)

Without loss of generality, frequency ω in cos(ωt) + r can be assumed to be 1.
The interval where cos(t)+ r (−1 ≤ r ≤ 1) takes a non-negative value in period
[−π, π] is [− cos−1(−r), cos−1(−r)]. Hence, K(r) and L(r) are calculated as

K(r) =
1

π

∫ π

−π
g(cos(t) + r) cos(t)dt

=
1

π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r) cos(t)dt

=
1

π

(√
1− r2r − cos−1(r)

)
+ 1,

L(r) =
1

2π

∫ π

−π
g(cos(t) + r)dt

=
1

2π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r)dt

=
1

π

(√
1− r2 − r cos−1(r)

)
+ r.

The case of |r| > 1 is trivial.

Appendix B: Approximation of K(r) and L(r) in the vicinity
of r = −1
Functions K(r) and L(r) can be expanded in the vicinity of r = −1 as

K(r) =
4
√
2

3π
(r + 1)

3
2 −
√
2

5π
(r + 1)

5
2 + · · · ,

L(r) =
2
√
2

3π
(r + 1)

3
2 +

√
2

30π
(r + 1)

5
2 + · · · .

Therefore, r and L(r) can be expressed as as functions of K(r), as

r ≈
(

3π

4
√
2
K(r)

) 2
3

− 1 =
1

2

(
3π

2

) 2
3

K(r)
2
3 − 1,

L(r) ≈ 1

2
K(r).
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