
A Supplement to �Frequency Responses of a

Neural Oscillator�

Kiyotoshi Matsuoka

September 2, 2013

The transfer function N (ω,A) of the neural oscillator discussed in the article
�Frequency Responses of a Neural Oscillator� is a very complicated function of
frequency ω and amplitude A of the sinusoidal input. It is

N (ω,A) = K (rx)
1 + jTω

1 + (τTω2
n − 1) K(rx)

Kn
− τTω2 + j (Kn −K (rx))Taω

, (1)

where function K is

K (r) =


0 (r < −1)

1
π

(√
1− r2r − cos−1 (r)

)
+ 1 (−1 ≤ r ≤ 1)

1 (r > 1).

Parameter ωn represents an approximate frequency of the self-excited oscillation,
being

ωn =
1

T

√
(τ + T ) b

τa
− 1. (2)

Parameter Kn is

Kn =
τ + T

Ta
. (3)

If rx in (1) were independent of ω and A, the system would be just a simple
second-order linear one. Actually, rx is a very complicated function of ω and A.
It is implicitly de�ned by the following equation:

{rx + (a+ b)L(rx)}
∣∣∣∣ 1+jTω

1+(τTω2
n−1)

K(rx)
Kn

−τTω2+j(Kn−K(rx))Taω

∣∣∣∣
= 2

(
c
A −

1
π

)
,

(4)

where function L is de�ned by

L (r) =


0 (r < −1)

1
π

(√
1− r2 − r cos−1 (r)

)
+ r (−1 ≤ r ≤ 1)

r (r > 1).
(5)
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In order for the oscillator to generate a stationary oscillation by itself, the
model parameters must satisfy the following inequalities

1 +
τ

T
< a < b+ 1. (6)

Below we assume that the parameters are set to satisfy this condition, but if
the oscillator is used as an input-output system, the condition is not necessarily
required. The non-oscillatory oscillator coupled with a controlled object in a
feedback manner can produce an oscillation.

The transfer function, (1) with (4), is extremely complex, but it can con-
siderably be simpli�ed by giving some constraints to the model parameters and
the input amplitude A. I think this simpli�cation is very helpful to get a rough
picture of the frequency response of the oscillator. The �rst constraint is a = b,
which always satis�es the second inequality in (6). As is shown in the article, if
a = b, we have ωn = 1√

τT
, leading to

N (ω,A) = K (rx) 1+jTω
1−τTω2+j(Kn−K(rx))Taω

. (7)

The second constraint is A = πc. It makes (4) extremely simple as

rx + 2aL (rx) = 0. (8)

This implies that rx is independent of ω and A, depending only upon a (> 0).
It is easy to see that rx is a monotonically decreasing function of a and that
rx = −1 for a → ∞. From the �rst inequality of (6), parameter a must be
greater than 1. This fact and (8) lead to L(rx) < − 1

2rx. From this inequality
and the middle �gure in Fig.1, we �nd that −1 < rx . −0.3.

The value πc has a special meaning. As is shown in the article �Frequency
Responses...�, the input amplitude A must satisfy the following inequalities

A0(ω) < A < A1(ω), (9)

where

A0(ω) =
c

1
2

√
T 2ω2+1

τT |ω2−ω2
n|

c
An

+ 1
π

and

A1(ω) =


∞

(
ω ≤ ω1

.
=

√
π2

4 −1
τ

)
c

1
π−

1
2

1√
τ2ω2+1

(ω > ω1) .

If A < A0(ω), then the output of the oscillator is not completely entrained by
the input. If A > A1(ω), then the output will vanish. (The latter is a peculiar
property of the Matsuoka model.) Functions A0(ω) and A1(ω) both coverages
to πc for ω → ∞. Namely, A = πc is the only value that satis�es (9) for every
0 < ω <∞.
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For −1 < rx . −0.3, L (rx) ≈ 1
2K (rx) holds approximately (see the right

�gure (the thin curve) in Fig.1 and Appendix B) and hence we have aK (rx) ≈
2aL (rx) = −rx. Substituting this into (7), we have

N (ω) = K (rx)
1 + jTω

1− τTω2 + j (Kna+ rx)Tω
. (10)

Moreover we rewrite this as a function of the normalized frequency Ω = ω
ωn

:

N (Ω) = K (rx)
1 + jξΩ

1− Ω2 + j
(

1
ξ + (1 + rx) ξ

)
Ω
. (11)

where ξ =
√

T
τ . Thus, we have obtained a very simple form of transfer function,

though its shape depends on two parameters ξ > 0 and −1 < rx . −0.3.
Now, we can draw a rough picture of the frequency response of the oscillator

by investigating (11). As an example, let us �nd the condition for the system to
have a strong resonance characteristic around Ω ≈ 1 (or ω ≈ ωn). The (relative)
gain of N (Ω) at Ω ≈ 1 is

|N (1)|
|N (0)|

=

√
1 + ξ2

1
ξ + (1 + rx) ξ

.

This value becomes very large only when ξ is very large and rx is close to −1.
Namely, the strong resonance occurs only if T � τ and a� 1.
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