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The transfer function N (w, A) of the neural oscillator discussed in the article
“Frequency Responses of a Neural Oscillator” is a very complicated function of
frequency w and amplitude A of the sinusoidal input. It is
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where function K is
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Parameter w,, represents an approximate frequency of the self-excited oscillation,
being
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If r, in (1) were independent of w and A, the system would be just a simple
second-order linear one. Actually, 7, is a very complicated function of w and A.
It is implicitly defined by the following equation:
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where function L is defined by
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In order for the oscillator to generate a stationary oscillation by itself, the
model parameters must satisfy the following inequalities

1+%<a<b+1. (6)

Below we assume that the parameters are set to satisfy this condition, but if
the oscillator is used as an input-output system, the condition is not necessarily
required. The non-oscillatory oscillator coupled with a controlled object in a
feedback manner can produce an oscillation.

The transfer function, (1) with (4), is extremely complex, but it can con-
siderably be simplified by giving some constraints to the model parameters and
the input amplitude A. I think this simplification is very helpful to get a rough
picture of the frequency response of the oscillator. The first constraint is a = b,
which always satisfies the second inequality in (6). As is shown in the article, if
a = b, we have w,, = \/%, leading to
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The second constraint is A = we. It makes (4) extremely simple as
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This implies that r, is independent of w and A, depending only upon a (> 0).
It is easy to see that r, is a monotonically decreasing function of a and that
ry = —1 for a — oo. From the first inequality of (6), parameter a must be
greater than 1. This fact and (8) lead to L(ry) < —3r,. From this inequality
and the middle figure in Fig.1, we find that —1 < r, < —0.3.

The value 7c has a special meaning. As is shown in the article “Frequency
Responses...”; the input amplitude A must satisfy the following inequalities
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If A < Ap(w), then the output of the oscillator is not completely entrained by
the input. If A > A;(w), then the output will vanish. (The latter is a peculiar
property of the Matsuoka model.) Functions Ag(w) and A;(w) both coverages
to me for w — co. Namely, A = 7c is the only value that satisfies (9) for every
0<w<oo.



For -1 <r, < —0.3, L(ry) ~ 1K (r;) holds approximately (see the right
figure (the thin curve) in Fig.1 and Appendix B) and hence we have aK (r,) =
2aL (ry) = —r,. Substituting this into (7), we have
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Moreover we rewrite this as a function of the normalized frequency 2 =
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where ¢ = \/g . Thus, we have obtained a very simple form of transfer function,
though its shape depends on two parameters £ > 0 and —1 < r, < —0.3.

Now, we can draw a rough picture of the frequency response of the oscillator
by investigating (11). As an example, let us find the condition for the system to
have a strong resonance characteristic around 2 ~ 1 (or w &~ wy,). The (relative)
gain of N (2) at Q ~ 1 is
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This value becomes very large only when ¢ is very large and r, is close to —1.
Namely, the strong resonance occurs only if 7> 7 and a > 1.




