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1 The Oscillator with Linear Input

The system dealt with in “Frequency Responses of a Neural Oscillator” is

T%:pi () +zi(t) = c—ay;(t) —bvi(t)—g(Fu®)) (i,7=1,2i%#j),(1)
T%vi B +wvit) = wi(t)=gz(t), (2

y(t) = yat) —uy1 (0). (3)

An important feature of this input-output system is in the way of input, —g (£u (t)).
Since y;(t), v;(t) and g (£u (¢)) are all non-negative, the right-hand side of (1)
never exceeds positive constant ¢, implying that a; (¢) is bounded to the upper
by c¢. This leads to 0 < y; (¢) < ¢ and hence —c < y (¢) < ¢. Thus we find that
the output y (¢) of the system is bounded however positively/negatively large
the input wu(¢) is.

If the nonlinear inputs —g (du (t)) is replaced by linear inputs Fu (¢) as

T%Jii (t) + z; (t) = ¢ — ay; (t) — bv; (t) F u(t), (4)

then the boundedness of the output will be lost. This supplement discusses the
frequency response in this case.

2 Describing Function

Carrying out the same calculations as those in “Frequency Responses ...” for
the present system, we have

T%@(t) +2,(t)+Azre = c—a(K (ry) & (t) + AzL (r2))
=b(0; (t) + Az L (1))
Fu(t), (5)



T () +0: (8) = K (1) T (1), (6)

yi = K (ry) @; (t) + AL (r2) - (7)

Defining z () 2 To (t) — Z1 (t) and v (¢) 2 U2 (t) — U1 (t), we obtain a set of
linearized equations that relates input « (¢) and output y (¢):

T )+ (1 —aK (ry))x (t) = —bv (t) + 2u (¢), (8)
d

Tav t)+v(t) =K (ry)x(t), (9)

y(t) = K (ra)z (1). (10)

Applying the Laplace transform to these equations, we obtain the following
transfer functions:

B 2(Ts+1)
Gls,4) = TTs?2 + (K, — K (ry))Tas+ 1+ (1Tw2 — 1) %:)7 .
N (s, A) = K (r3) G(s, A). (12)

Function G (s, A) represents the transfer function from u(t) to x(¢), and function
N (s, A) represents that from u(t) to y(t). Substituting s in G(s, A) and N(s, A)
by jw , we have frequency transfer functions or describing functions of the
system:

2(jTw+1)
G (Wv A) = K(ra) B ’ (13)
1+ (7Tw? — 1) ol TTw? + j (K, — K (r2)) Taw
N (w, A) = K (rz) G(w, A). (14)
In the same way as “Frequency Response ...” the following holds:
1
A, = 5\G(w,A)|A. (15)

The obtained describing functions do not look so different from those of
the previous model; the only difference is that 2 in the numerator of (13) is
missing in the previous model. Actually, however, r, = r;(w, A) is different
between them. Extracting the bias components from (5), we have A,r, =
¢c—aA;L(ry) —bA,L(ry) or

Ag{re + (a+b)L(ry)} =c. (16)
Combining (15) and (16), we obtain {r, + (a + b)L(r,)} |G(w, A)| = £ or



{rz + (a + b)L(TI)} ‘ij + 1| E (17)

1+ (rTw2 — 1) K=l — o Tw? 4 j (K, — K (rp) Taw| A

This equation implicitly defines function r, = r,(w, A). In the previous model

the right-hand side of the corresponding equation was 2 (i - %)

3 Dependency of the Frequency Response on the
Input Amplitude

If the amplitude of the sinusoidal input is small, the output will be a mixture
of an oscillator-originated wave and an input-originated one. As the amplitude
increases and exceeds a critical value, the so-called entrainment occurs; the in-
herent oscillation originated from the oscillator completely disappears. Transfer
function G (s, A) was derived based on the assumption that the oscillator en-
trains to the sinusoidal input. However, when the input amplitude is too small
and hence K (r,) is large, G (s, A) enters an unstable region. The critical am-
plitude below which the system becomes unstable can be considered the lower
bound of the entrainment.
Equation (11) implies that the stable-unstable transition occurs when

T+T
K (ry) = K, <: Ta > . (18)
In this situation, (12) with (11)becomes
2K, (T's + 1)

N(s, A) = (19)

TT(s2 +w?2)’
The linear system theory tell us that, without input, this system generates
a periodic oscillation of frequency w,, which is the inherent frequency of the
oscillator. Thus, it can be predicted that the complete entrainment occurs
when K(ry) < K.

Substituting K (r,) = K,, or r, = K~ (K,) into (17) and solving it with
respect to A, we find the minimum amplitude of the input for entrainment. We
denote it by Ag(w):

7T |w? — W2 |

Ag(w) = 22 1 1 An, (20)
where . c
A S TR+ @t DL (K (K (1)
In the previous model the minimum amplitude for entrainment was
Ap(w) = : (22)

VT?2w2+1 ¢ +

1 VT?w241
2 T |w?2—w2| A,

1 .
™



There is a big difference between (20) and (22). Function (20) is an unbounded
function with respect to w; Ag(w) — oo for w — co. In contrast, function (22)
is bounded; Ap(w) < 7e.

Next let us investigate what will happen when the input amplitude is very
large. For A — oo, (17) reduces to

re + (@ +b)L(ry) =0.

Thus, we find that the present system with A — ¢ has essentially the same fre-
quency response as that of the previous system with A = 7¢; see “A supplement
to ’Frequency Responses of a Neural Oscillator”’. In the previous system, as
the input amplitude increases further than wc¢ and reach a certain finite value
Aj(w), the output totally vanishes, i.e., N(w, A;(w)) = 0. Such a phenomenon
does not occur in the present system.



