
Second Supplement to �Frequency Responses of

a Neural Oscillator�

Kiyotoshi Matsuoka

October 18, 2013

1 The Oscillator with Linear Input

The system dealt with in �Frequency Responses of a Neural Oscillator� is

τ
d

dt
xi (t) + xi (t) = c− ayj (t)− bvi (t)− g (±u(t)) (i, j = 1, 2; i 6= j), (1)

T
d

dt
vi (t) + vi (t) = yi (t) = g (xi (t)) , (2)

y (t) = y2(t)− y1 (t) . (3)

An important feature of this input-output system is in the way of input, −g (±u (t)).
Since yj(t), vi(t) and g (±u (t)) are all non-negative, the right-hand side of (1)
never exceeds positive constant c, implying that xi (t) is bounded to the upper
by c. This leads to 0 ≤ yi (t) ≤ c and hence −c ≤ y (t) ≤ c. Thus we �nd that
the output y (t) of the system is bounded however positively/negatively large
the input u(t) is.

If the nonlinear inputs −g (±u (t)) is replaced by linear inputs ∓u (t) as

τ
d

dt
xi (t) + xi (t) = c− ayj (t)− bvi (t)∓ u(t), (4)

then the boundedness of the output will be lost. This supplement discusses the
frequency response in this case.

2 Describing Function

Carrying out the same calculations as those in �Frequency Responses ...� for
the present system, we have

τ
d

dt
x̃i(t) + x̃i(t) +Axrx = c− a (K (rx) x̃j (t) +AxL (rx))

−b (ṽi (t) +AxL (rx))

∓u (t) , (5)
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T
d

dt
ṽi (t) + ṽi (t) = K (rx) x̃i (t) , (6)

yi = K (rx) x̃i (t) +AxL (rx) . (7)

De�ning x (t)
4
= x̃2 (t) − x̃1 (t) and v (t)

4
= ṽ2 (t) − ṽ1 (t), we obtain a set of

linearized equations that relates input u (t) and output y (t):

τ
d

dt
x (t) + (1− aK (rx))x (t) = −bv (t) + 2u (t) , (8)

T
d

dt
v (t) + v (t) = K (rx)x (t) , (9)

y (t) = K (rx)x (t) . (10)

Applying the Laplace transform to these equations, we obtain the following
transfer functions:

G(s,A) =
2 (Ts+ 1)

τTs2 + (Kn −K (rx))Tas+ 1 + (τTω2
n − 1) K(rx)

Kn

, (11)

N (s,A) = K (rx)G(s,A). (12)

Function G (s,A) represents the transfer function from u(t) to x(t), and function
N (s,A) represents that from u(t) to y(t). Substituting s in G(s,A) and N(s,A)
by jω , we have frequency transfer functions or describing functions of the
system:

G (ω,A) =
2 (jTω + 1)

1 + (τTω2
n − 1) K(rx)

Kn
− τTω2 + j (Kn −K (rx))Taω

, (13)

N (ω,A) = K (rx)G(ω,A). (14)

In the same way as �Frequency Response ...� the following holds:

Ax =
1

2
|G(ω,A)|A. (15)

The obtained describing functions do not look so di�erent from those of
the previous model; the only di�erence is that 2 in the numerator of (13) is
missing in the previous model. Actually, however, rx = rx(ω,A) is di�erent
between them. Extracting the bias components from (5), we have Axrx =
c− aAxL (rx)− bAxL(rx) or

Ax{rx + (a+ b)L(rx)} = c. (16)

Combining (15) and (16), we obtain {rx + (a+ b)L(rx)} |G(ω,A)| = 2c
A or
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{rx + (a+ b)L(rx)} |jTω + 1|
|1 + (τTω2

n − 1) K(rx)
Kn

− τTω2 + j (Kn −K (rx))Taω|
=

c

A
. (17)

This equation implicitly de�nes function rx = rx(ω,A). In the previous model
the right-hand side of the corresponding equation was 2

(
c
A −

1
π

)
.

3 Dependency of the Frequency Response on the

Input Amplitude

If the amplitude of the sinusoidal input is small, the output will be a mixture
of an oscillator-originated wave and an input-originated one. As the amplitude
increases and exceeds a critical value, the so-called entrainment occurs; the in-
herent oscillation originated from the oscillator completely disappears. Transfer
function G (s,A) was derived based on the assumption that the oscillator en-
trains to the sinusoidal input. However, when the input amplitude is too small
and hence K (rx) is large, G (s,A) enters an unstable region. The critical am-
plitude below which the system becomes unstable can be considered the lower
bound of the entrainment.

Equation (11) implies that the stable-unstable transition occurs when

K (rx) = Kn

(
=
τ + T

Ta

)
. (18)

In this situation, (12) with (11)becomes

N(s,A) =
2Kn (Ts+ 1)

τT (s2 + ω2
n)
. (19)

The linear system theory tell us that, without input, this system generates
a periodic oscillation of frequency ωn, which is the inherent frequency of the
oscillator. Thus, it can be predicted that the complete entrainment occurs
when K(rx) < Kn.

Substituting K (rx) = Kn or rx = K−1 (Kn) into (17) and solving it with
respect to A, we �nd the minimum amplitude of the input for entrainment. We
denote it by A0(ω):

A0(ω) =
τT |ω2 − ω2

n|√
T 2ω2 + 1

An, (20)

where
An ,

c

K−1 (Kn) + (a+ b)L (K−1 (Kn))
. (21)

In the previous model the minimum amplitude for entrainment was

A0(ω) =
c

1
2

√
T 2ω2+1

τT |ω2−ω2
n|

c
An

+ 1
π

. (22)
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There is a big di�erence between (20) and (22). Function (20) is an unbounded
function with respect to ω; A0(ω) → ∞ for ω → ∞. In contrast, function (22)
is bounded; A0(ω) < πc.

Next let us investigate what will happen when the input amplitude is very
large. For A→∞, (17) reduces to

rx + (a+ b)L(rx) = 0.

Thus, we �nd that the present system with A→ c has essentially the same fre-
quency response as that of the previous system with A = πc; see �A supplement
to 'Frequency Responses of a Neural Oscillator� '. In the previous system, as
the input amplitude increases further than πc and reach a certain �nite value
A1(ω), the output totally vanishes, i.e., N(ω,A1(ω)) = 0. Such a phenomenon
does not occur in the present system.
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